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Chapter 3

Spot Rates, Forward Rates and

the Term Structure



Learning Objectives

. Spot rate of interest

. Forward rate of interest

. Yield curve

. Term structure of interest rates
. Interest rate swap

. Swap rate



3.1 Spot and Forward Rates of Interest

We now allow the rate of interest to vary with the duration of the

Ivestment.

We consider the case where investments over different horizons earn
different rates of interest, although the principle of compounding

still applies.

We consider two notions of interest rates, namely, the spot rate of

interest and the forward rate of interest.

Consider an investment at time 0 earning interest over ¢ periods. We
assume that the period of investment is fixed at the time of invest-
ment, but the rate of interest earned per period varies according to

the investment horizon.



Thus, we define i; as the spot rate of interest, which is the annualized

effective rate of interest for the period from time O to ¢.

The subscript ¢ in ¢ highlights that the annual rate of interest varies

with the investment horizon.

Hence, a unit payment at time 0 accumulates to
a(t) = (1 +1i7) (3.1)
at time f.

The present value of a unit payment due at time ¢ is

1 1
ORI 32

We define ¥ as the rate of interest applicable to the period ¢t — 1 to

t, called the forward rate of interest.
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e This rate is determined at time 0, although the payment is due at
time t — 1 (thus, the use of the term forward).

e By convention, we have i{ = if'. However, i¥ and i are generally

different for t = 2,3, ---. See Figure 3.1 for illustration.



Figure 3.1: Spot and forward rates of interest
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e A plot of i¥ against ¢ is called the yield curve, and the mathemat-
ical relationship between ¢? and ¢ is called the term structure of

interest rates.



The spot and forward rates are not free to vary independently of

each other.

Consider the case of t = 2. If an investor invests a unit amount at
time 0 over 2 periods, the investment will accumulate to (14145 )? at

time 2.

Alternatively, she can invest a unit payment at time 0 over 1 period,
and enters into a forward agreement to invest 1 + 47 unit at time 1

to earn the forward rate of 74 for 1 period.

This rollover strategy will accumulate to (1 + 4% )(1 +4%) at time 2.
The two strategies will accumulate to the same amount at time 2,
so that

(1+45)* = (1 +47)(1 + 145, (3.3)



if the capital market is perfectly competitive, so that no arbitrage

opportunities exist.

e Equation (3.3) can be generalized to the following relationship con-

cerning spot and forward rates of interest
(L+a) =1+ ) T (1 +i), (3.4)
fort=2,3,---.
e We can also conclude that

(14+i) ' =@+ A +E)- - (1 +4D). (3.5)

e Given ¥, the forward rates of interest i." satisfying equations (3.4)

and (3.5) are called the implicit forward rates.



e The quoted forward rates in the market may differ from the implicit

forward rates in practice, as when the market is noncompetitive.

e Unless otherwise stated we shall assume that equations (3.4) and
(3.5) hold, so that it is the implicit forward rates we are referring to

in our discussions.

e From equation (3.4),

(1+P)!
(1+ Z'%9—1)7}1

1. (3.6)

l, =

Example 3.1: Suppose the spot rates of interest for investment horizons
of 1, 2, 3 and 4 years are, respectively, 4%, 4.5%, 4.5%, and 5%. Calculate

the forward rates of interest for ¢ =1, 2, 3 and 4.



Solution: First, if” =7 = 4%. The rest of the calculation, using (3.6),

is as follows

e (1+145)? (1.045)2
_ 1= —1=15.0024
2T s 1.04 %,
14 49)3 1.045)3
Tl UL ) S L
(1 +i5)2 (1.045)?
. A+ . (L05)"
|+ 1.05
- 4
_ 1= — 1 =6.5144%.
TSy (1.045)3 &

[l

Example 3.2: Suppose the forward rates of interest for investments in
year 1, 2, 3 and 4 are, respectively, 4%, 4.8%, 4.8% and 5.2%. Calculate
the spot rates of interest for t = 1, 2, 3 and 4.

Solution: First, ¥ = I = 4%. From (3.5) the rest of the calculation
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is as follows

i5 = [(1447)(1+i5)]® — 1= +v1.04 x 1.048 — 1 = 4.3992%,

1
i5 = [(L+i)(1+d)(1+)]°—1 = (1.04x 1.048x 1.048)7 —1 = 4.5327%
and
1
i = [+ +iH A+ +d)]) -1
— (1.04 x 1.048 x 1.048 x 1.052)3 — 1
—  4.6991%.
]

e We define the multi-period forward rate i; . as the annualized rate
of interest applicable over 7 periods from time ¢t to t + 7, for t > 1

and 7 > 0, with the rate being determined at time 0.
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e The following no-arbitrage relationships hold
(144 )" = (T4i ) (A+13),,) - (1+iy,.), fort>1,7>0, (3.7)
and

(144 )" =1 +a) (1 +4,)7, fort>17>0. (3.8)

Example 3.3: Based on the spot rates of interest in Example 3.1,

calculate the multi-period forward rates of interest iy, and i 5.

Solution: Using (3.7) we obtain

(1.050024 x 1.045)% — 1 = 4.7509%.

N~

— 1

iy = [(1+1d3)(1 + )]
Similarly, we have

ity = (1.050024 x 1.045 x 1.065144)5 — 1 = 5.3355%.
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We may also use (3.8) to compute the multi-period forward rates. Thus,

1 1
- (1+145)372 (1.045)3 2
— 1= — 1 = 4.7509
1.2 [1+ﬁ 1.04 %,

and similarly,

1 4i5)17 1.05)473
ﬁg:[<+%>] —1:[< )] — 1 =15.3355%.
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3.2 The Term Structure of Interest Rates

Empirically the term structure can take various shapes. A sample

of four yield curves of the US market are presented in Figure 3.4.

The spot-rate curve on 03/2006 is an example of a nearly flat term

structure.

On 08/2019 we have a downward sloping term structure. In

this case the forward rate drops below the spot rate.
We have an upward sloping term structure on 07/2002.

Unlike the case of a downward sloping yield curve, the forward rate

exceeds the spot rate when the yield curve is upward sloping.

The yield curve on 07/2007 is inverted humped.
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Figure 3.4:
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e An upward sloping yield curve is also said to have a normal term
structure as this is the most commonly observed term structure

empirically:.
e We have an inverted humped yield curve on 2007/12/31.

e Some questions may arise from a cursory examination of this sample

of yield curves. For example,

— How are the yield curves obtained empirically?
— What determines the shape of the term structure?
— Why are upward sloping yield curves observed more often?

— Does the term structure have any useful information about the

real economy?
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3.3 Present and Future Values Given the Term Structure

e We now consider the present and future values of an annuity given

the term structure.
e We continue to use the actuarial notations introduced in Chapter 2.

e The present value of a unit-payment annuity-immediate over n pe-

riods is

1
= (14
1 1 1
= —= t =+t . 3.9
(T+7)  (1+45)? (145)m (3.9)



e The future value at time ¢ of a unit payment at time 0 is

a(t) = (1+i9) Hl—l—z 14+ +E) -1 +4F). (3.10)

e The present value of a unit payment due at time ¢ is

L (3.11)
a(t)  TI\_,(1+4f) |

and the present value of a n-payment annuity-immediate can also
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be written as

t=1

z 1
; [T, (1 +4)

1 1 1

TOh arihayh T T o avi)
(3.12)

e The computation of the future value at time n of a payment due at

time ¢, where 0 < t < n, requires additional assumptions.

e We consider the assumption that a payment occurring in the

future earns the forward rates of interest.
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e The future value at time n of a unit payment due at time t is
(1 +igy)" " = (L + i) - (L+14,), (3.13)
and the future value at time n of a n-period annuity-immediate is

smp=0 44, )" o+ (L +dh_ )+ 1
=L+ A+ () + [+ i+ (i)
"‘—|—(1—|—i5)—|—1. (3.14)

e From (3.14) we can see that

n
1 1 1
0 [H T T armaTi) (4 i0) - (1 + L)

(3.16)
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e Hence,
Sp = (H(l + Zf)) aq = a(n)a;). (3.17)
t=1

e An alternative formula to calculate s;) using the spot rates of interest

1S

sm = (L+4,)" ag

n

= (1+142) [Z 150

t=1

(3.18)

Example 3.4: Suppose the spot rates of interest for investment horizons
of 1, 2, 3 and 4 years are, respectively, 4%, 4.5%, 4.5%, and 5%. Calculate

az), s3], az) and s3j.
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Solution: From (3.9) we have

1 1 1 1

0= — 3.5763.
M 704 T (1.045) T (1.045)7  (1.05)°
From (3.17) we obtain
s71 = (1.05)* x 3.5763 = 4.3470.
Similarly,
B N I N e
BT 704 T (10452 1 (1045 O
and

s51 = (1.045)% x 2.7536 = 3.1423.
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Example 3.5:  Suppose the 1-period forward rates of interest for in-
vestments due at time 0, 1, 2 and 3 are, respectively, 4%, 4.8%, 4.8% and
5.2%. Calculate az) and sy).

Solution: From (3.12) we have

1 1 1 1

“T = T04 " T.04 x 1.048 " 1.04 x 1048 x 1.048 ' 1.04 x 1.048 x 1.048 x 1.052

= 3.58067.

As a(4) = 1.04 x 1.048 x 1.048 x 1.052 = 1.2016, we have
sy = 1.2016 x 3.5867 = 4.3099.

Alternatively, from (3.14) we have

sy = 1+ 1.052 4+ 1.048 x 1.052 + 1.048 x 1.048 x 1.052
= 4.3099.
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e To further understand (3.17), we write (3.13) as (see (3.8))

(1 + )" _a(n)
(1+d7) alt)

(144, )" "= (3.19)

e Thus, the future value of the annuity is, from (3.14) and (3.19),

n—1
[Z]‘—'_Ztn )"

+1

t=1

|
[
2 |2
S =S
N~—

= a(n)ay. (3.20)



e In Chapter 2 we assume that the current accumulation function a(t)

applies to all future payments.

e Under this assumption, if condition (1.35) holds, equation (3.20) is

valid. However, for a given general term structure, we note that

(1L+)"  an)
T+i)  alt)

a(n =) = (1435 )" #

so that condition (1.35) does not hold.

e Thus, if future payments are assumed to earn spot rates of interest
based on the current term structure, equation (3.20) does not hold

in general.

Example 3.6: Suppose the spot rates of interest for investment horizons

of 1 to 5 years are 4%, and for 6 to 10 years are 5%. Calculate the present
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value of an annuity-due of $100 over 10 years. Compute the future value
of the annuity at the end of year 10, assuming (a) future payments earn
forward rates of interest, and (b) future payments earn the spot rates of

interest as at time 0.

Solution: We consider the 10-period annuity-due as the sum of an
annuity-due for the first 6 years and a deferred annuity-due of 4 payments
starting at time 6. The present value of the annuity-due for the first 6

years 1s

1 —(1.04)°
100 X agg.04 = 100 X [ (1.04) ]

1 — (1.04)!
= $545.18.

The present value at time 0 for the deferred annuity-due in the last 4 years
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1S

1 —(1.05)"1 1= (1.05)7°
1 —(1.05)"1 1 —(1.05)"1
= 100 x (8.1078 — 5.3295)

— $277.83.

100 % (d1g19.05 — d10.05) = 100 X

Hence, the present value of the 10-period annuity-due is
545.18 + 277.83 = $823.01.

We now consider the future value of the annuity at time 10. Under as-
sumption (a) that future payments earn the forward rates of interest, the

future value of the annuity at the end of year 10 is, by equation (3.20),

(1.05)' x 823.01 = $1,340.60.
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Note that using (3.20) we do not need to compute the forward rates of
interest to determine the future value of the annuity, as would be required
if (3.16) is used.

Based on assumption (b), the payments at time 0,--- ;4 earn interest
at 5% per year (the investment horizons are 10 to 6 years), while the
payments at time 5,---,9 earn interest at 4% per year (the investment

horizons are 5 to 1 years). Thus, the future value of the annuity is
100 x (51—0}0.05 — :9'510.05) + 100 X 3310.04 = $1,303.78.

Thus, equation (3.20) does not hold under assumption (b). O
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3.4 Accumulation Function and the Term Structure

Equation (3.1) can be extended to any ¢ > 0, which need not be an

integer.

The annualized spot rate of interest for time to maturity ¢, 7, is
given by
i = la(t)]r — 1. (3.22)

We may also use an accumulation function to define the forward

rates of interest.

Let us consider the forward rate of interest for a payment due at

time ¢t > 0, and denote the accumulation function of this payment
by ai(-), where a;(0) = 1.
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Now a unit payment at time 0 accumulates to a(t+ 7) at time t + 7,
for 7 > 0.

On the other hand, a strategy with an initial investment over ¢ pe-
riods and a rollover at the forward rate for the next 7 periods will

accumulate to a(t)a,(7) at time ¢ 4 7.

By the no-arbitrage argument, we have

a(t)ay(T) = a(t + 1), (3.23)
so that ()
a (1) = O (3.24)

The annualized forward rate of interest in the period ¢ to ¢ + 7, 7},

satisfies
CLt(T) = (]. —+ 'I:ET)T,
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so that

il

— 1. (3.25)

iy, = [a:(7)]

e If 7 < 1, we define the forward rate of interest per unit time (year)
for the fraction of a period ¢ to t + 7 as
1 oar) —a(0)  a(r)—1

= — X e
b T as(0) T

(3.26)

e The instantaneous forward rate of interest per unit time at

31



time ¢ is equal to zf _ for 7 — 0, which is given by

— 1
limi, = lim a:(7)
T—0 7 7—0 T
| _
= lim — X a(t+7)_1]
7T—0 T i a(t)
1 [ _
b a(t + 7) a(t)]
a(t) T—0 i T

a'(t)

= §(1). (3.27)

e Thus, the instantaneous forward rate of interest per unit time is

equal to the force of interest.

Example 3.7: Suppose a(t) = 0.01¢*+0.1¢+ 1. Compute the spot rates

of interest for investments of 1, 2 and 2.5 years. Derive the accumulation
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function for payments due at time 2, assuming the payments earn the
forward rates of interest. Calculate the forward rates of interest for time

to maturity of 1, 2 and 2.5 years.

Solution:  Using (3.22), we obtain i{ = 11%, i5 = 11.36% and i3, =
11.49%. Thus, we have an upward sloping spot-rate curve. To calculate

the accumulation function of payments at time 2 we first compute a(2) as
a(2) = 0.01(2)* +0.1(2) + 1 = 1.24.

Thus, the accumulation function for payments at time 2 is
a(2+t)  0.01(2+¢)*+0.1(24+1t) +1

)= =5y = 1.24

Using the above equation, we obtain as(1) = 1.1210, ay(2) = 1.2581 and

a2(2.5) = 1.3327, from which we conclude i3, = 12.10%,

— 0.0081#%> + 0.1129¢ + 1.

—1=12.16%

N~

if, = (1.2581)
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and
ifys = (1.3327)25 — 1 =12.17%.

Thus, the forward rates exceed the spot rates, which agrees with what

might be expected of an upward sloping yield curve. O

e We can further establish the relationship between the force of in-
terest and the forward accumulation function, and thus the forward

rates of interest.

e From (3.24), we have

Ca(t+T) &P (fOHT d(s) ds) - .
= at)  exp (fot o(s) ds) - (/t o) ds) |

(3.28)
so that we can compute the forward accumulation function from the

force of interest.
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Example 3.8: Suppose d(t) = 0.05¢. Derive the accumulation function
for payments due at time 2, assuming the payments earn the forward rates
of interest. Calculate the forward rates of interest for time to maturity of

1 and 2 years.

Solution: Using (3.26) we obtain
2+t

as(t) = exp (/ 0.05s ds) = exp [0.025(2 + t)? — 0.025(2)2] = exp(0.025t*+0.1¢).
2

Thus, we can check that a»(0) = 1. Now,

as(1) = exp(0.125) = 1.1331,
so that i5; = 13.31%. Also, a2(2) = exp(0.3) = 1.3499, so that

— 1 =16.18%.

N[~

ify = (1.3499)
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e We now consider payments of C,Cy,--- ,C, at time t] <ty < --- <

t,, respectively.
e We wish to compute the value of these cash flows at any time ¢ (> 0).

e For the payment C; at time ¢; < ¢, its accumulated value at time ¢
is Cjay,(t —t;). On the other hand, if ¢; > ¢, the discounted value
of C; at time ¢t is C;/a(t; — t).
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e Thus, the value of the cash flows at time ¢ is (see equation (3.24))

S Can,(t—t;) +zc[ tl—t)]_ZCj[ciL((zti))]+ZCj[%]

tj<t t; >t

= a(t) x present value of cash flows.

(3.29)

e An analogous result can be obtained if we consider a continuous cash

flow.
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e If C'(¢) is the instantaneous rate of cash flow at time ¢ for 0 < ¢t < mn,
the value of the cash flow at time 7 € [0,n] is

’ toe) L [T C{)a(r) " C(t)a(r)
/0 C(t)at(T—t)dt—F/T o >dt—/0 dt+/T dt

(t—17 a(t)

= a(T1) /On clt) dt

a(t

N (2)
= a(T) /On C'(t)v(t) dt. (3.30)

Example 3.9: Suppose a(t) = 0.02t*+0.05¢ + 1. Calculate the value at
time 3 of a 1-period deferred annuity-immediate of 4 payments of $2 each.

You may assume that future payments earn the forward rates of interest.

Solution: We first compute the present value of the annuity. The

payments of $2 are due at time 2, 3, 4 and 5. Thus, the present value of
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the cash flows is

2 X : + : + : + :
a(2) a(3)  a(4) a()]
Now, a(2) = 0.02(2)? + 0.05(2) + 1 = 1.18, and similarly we have a(3) =
1.33, a(4) = 1.52 and a(5) = 1.75. Thus, the present value of the cash
flow is

111
D% | —— f— 4§ — | =2 x 2.82866 = $5.
. [1.18 MR 1.75] X 2.82866 = $5.6573,

and the value of the cash flow at time 3 is a(3) x 5.6573 = 1.33 X 5.6573 =
$7.5242. O

Example 3.10:  Suppose 6(t) = 0.02t. An investor invests in a fund
at the rate of 10¢ per period at time ¢, for ¢ > 0. How much would she
accumulate in the fund at time 27 You may assume that future payments

earn the forward rates of interest.
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Solution: = The amount she invests in the period (¢, + At) is 10tAt,
which would accumulate to (10tAt)a,(2 — t) at time 2. Thus, the total

amount accumulated at time 2 is

2
/ 10ta,(2 — t)dt.
0

From (3.28), we have

w2t = ( [ 5(s) is) =exp ([ 2 0.0254s ).

Now, we have
2
/ 0.02sds = 0.01s%]7 = 0.01(2)* — 0.01¢2,
t

so that
a;(2 —t) = exp(0.04 — 0.01¢%)
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and

2 2
/ 10ta.(2 — t)dt = 10 / £e0 04001 gy
0 0

2
_ 1060.04/ te_0'01t2 At
t

10" (_8—0.01752]2)
0.02 0
1060'04(1 . 6_0'04)

0.02
= 20.4054.

[

Example 3.11: Suppose the principal is C' and interest is earned at the
force of interest d(t), for t > 0. What is the present value of the interest

earned over n periods.
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Solution:  As §(¢) is the instantaneous rate of interest per period at
time ¢, the amount of interest earned in the period (¢,t + At) is Co(t)At,
and the present value of this interest is [Cd(t)At|v(t). Thus, the present

value of all the interest earned in the period (0,n) is

/ " Os(t)(t) d.

0

Now, we have

/O CS(E)u(t) di = /O " 5(1) exp (— /O t5(s) ds) dt
(on(- [0
~ exp (_ / 5(s) ds) ~exp (_ / "5(s) ds)

=1—v(n).
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Hence, the present value of the interest earned is
Cll —wv(n)] = C — Cu(n),

which is the principal minus the present value of the principal redeemed

at time n. N
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3.5 Interest Rate Swaps

An interest rate swap is an agreement between two parties to ex-

change cash flows based on interest rate movements.

A simple interest rate swap arrangement involves two companies.
Company A agrees to pay cash flows to Company B equal to the
amount of interest at a pre-fixed rate on a notional principal amount

for a number of years.

At the same time, Company B consents to pay interests to Company
A at a floating rate on the same notional principal for the same

period of time.

The following features of an interest rate swap are often agreed upon

at the issue date.
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Swap Term (or Swap Tenor): The contract period of the interest

rate swap. It may be as short as a few months, or as long as 30 years.

Settlement Dates: The specified dates that two counterparties

have to exchange interest payments.

Settlement Period: The time between settlement dates is called
the settlement period. The settlement period specifies the frequency
of interest payments. It can be annually, quarterly, monthly, or at

any other interval determined by the parties.

Notional Amount: The notional principal amount is the prede-
termined dollar amount on which the exchanged interest payments
are based. It is only used for the calculation of interest payments

and is never exchanged.
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Swap Rate: The fixed interest rate specified in the interest rate

swap contract.

Floating Interest Rate: This is the reference rate for calculating
the floating interest payment at each settlement date. It must be

specified in the interest rate swap contract.

In general the notional amount is a constant over the swap tenor.
However, an accreting swap has the scheduled notional amount
increasing over time, while an amortizing swap has the notional

amount declining over time.

Commonly used floating reference interest rates in a swap agreement
include: Treasury Bill Rate, Prime Rate, Federal Funds Rate in the
US market, and the LIBOR (London Interbank Offer Rate) in the

international markets.
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The floating rate can be specified with a spread to the reference rate.

Interest rate swaps can be used to convert a floating rate loan to a

fixed rate debt or vice versa.

Suppose Company A has arranged to borrow US$10 million for five
years. The amount of interest is payable at the end of each set-

tlement year according to the 12-month US dollar LIBOR at the

beginning of the settlement period.

Company A, however, would like to transform this floating rate loan
to a fixed one. On the other hand, Company B has arranged to
borrow US$10 million at a fixed rate of 5% per annum for five years,
but would prefer to convert this fixed rate loan to a floating rate

loan.
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e Company A and Company B may enter into a simple interest rate
swap agreement, with Company A being the fixed-rate payer and
Company B being the floating-rate payer. Figure 3.5 illustrates

the arrangement of the swap.
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Figure 3.5: Illustration of cash flows of an

interest rate swap
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The fixed interest rate in the interest rate swap contract is called

the swap rate, which will be denoted by Rg.

We now discuss a theoretical framework for deriving Rg such that

the swap contract is equally attractive to both parties.

Consider a n-year interest rate swap contract with notional amount
m; for year t = 1,--- ,n. The settlement period is one year. At
time 0, when the contract is initiated, the spot rates of interest i;

are known.

The floating interest rate is defined as the realized one-year spot
rate iF observed at the beginning of the ¢! future settlement period.

It is obvious that i} = 7.

Suppose a fixed-rate payer enters into a contract with the coun-

terparty (i.e., the floating rate payer), which is the market maker.
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Figure 3.6 illustrates the cash flows of these parties.

Figure 3.6: Cash flows of an interest rate swap

Rs
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Fixed-Rate Payer ne Y
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e At the end of year ¢ the market maker will receive m;Rg and pays

myi; so that his net receipt is my(Rg — t1}).

e However, he can enter into a forward contract to borrow m; at time

t — 1 at forward rate ;.

e He will then lend the borrowed amount at the prevailing spot rate

i; for one period.
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e At time t the market maker’s net receipt on the forward contract

and the spot lending is m,(if — il").

e Table 3.1 summarizes the cash flows faced by the market maker.

Table 3.1: Cash flows of the market maker in Figure 3.6

Net receipt on Net receipt on
Year  forward contract swap contract Overall
1 my (it — i) my(Rg — i) mi(Rs — i} )
2 mo (i — i5) mo(Rs — 13) ma(Rg — i3 )
t my(if —iF) my(Rg — i7) my(Rs — i)
n my, (i — i}, my,(Rs — i) m,(Rs — iy,)

e Under the perfect and frictionless market assumption, the present

value of the overall cash flows of the market maker should be zero.
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e Therefore, we have

Rg — iF Rg — if Rg — iF
G o [ o [ g -0 e

> myif(L+if)
_t=1

Rg (3.32)

> my (L+d))7"
t=1

e For interest rate swaps with a constant notional principal amount

53



for every year, equation (3.32) can be simplified to

3

iF (1 4147)""
Rg = =

> o1+

t=1

(3.33)

3}—‘

Example 3.12: A company enters into a 5-year interest rate swap con-
tract with a level notional amount of $1 million. The settlement period
is one year. The floating interest rate is defined as the realized one-year
spot rate observed at the beginning of each settlement period. The spot

rates of interest at the initiation of the swap for investment horizons of
1, 2, 3, 4 and 5 years are, respectively, 3.5%, 3.8%, 4.3%, 4.9% and 5.2%.

Determine the swap rate.

Solution: The forward rates of interest ¥ for t = 1,2,3,4 and 5 can be
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calculated using equation (3.6). Table 3.2 shows the computation of the

swap rate via equation (3.33). Hence,

0.223894

= = 9.114
4.377604 ° o

S

Table 3.2: Computation results for Example 3.12

¢ i it i+t (1)
1 0.035000 0.035000  0.033816 0.966184
) 0.038000 0.041009  0.038061 0.928122
3 0.043000 0.053072  0.046775 0.881347
4 0.049000 0.067208  0.055503 0.825844
5 0.052000 0.064086  0.049738 0.776106
Total 0.223894 4.377604
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